
NAIVE : Network bAsed Intelligent Virtual Environments

N. AVRADINIS, A. BELESIOTIS, I. GIANNAKAS, R. KOUTSIAMANIS, T. PANAYIOTOPOULOS, K. TILELIS
Knowledge Engineering Lab, Department of Informatics

University of Piraeus
80 Karaoli & Dimitriou str., Piraeus 18534

GREECE

Abstract: - In this paper we suggest an approach for developing a network based system for hosting intelligent
virtual environments. We briefly introduce the notion of intelligent virtual environments and agents and
present the advantages and drawbacks of their network variant. We demonstrate an architecture and topology
for a network based approach and demonstrate its application on the Unreal Engine.

Key-Words: - Virtual Agents, Virtual Environments, Intelligent Agents, Distributed Agents, Network,
Distributed Environments

1 Introduction
Intelligent Virtual Environments, (IVEs), are very
demanding, in terms of computing power, due to the
combination of realistic 3D graphics with artificial
intelligence techniques. To overcome this, attempts
have been made to migrate to a distributed IVE
architecture : The systems DIVA, [1], and mVital,
[6], are some examples of such approaches.

In this paper we suggest a different approach to
such a distributed environment. Not unlike the DIVA
and mVital systems, our architecture also focuses on
the idea of decomposing the system into three
different modules; one responsible for the
manipulation of the agent, one for the “world” and
one for the visualization of the environment.
However, several changes have been introduced.

This paper is structured as follows: In Section 2
we present an introduction to intelligent virtual
agents (IVAs), intelligent virtual environments and
their network based approach. In Section 3, we
present the architecture of the proposed system and
its distribution over the network. In Section 4, we
present a case study over the Unreal Engine. Finally,
in Section 5, conclusions along with future work are
discussed.

2 Network-Based IVA and IVE

2.1 Definitions
The term Intelligent Virtual Agent (IVA) is
multifaceted and complex, requiring a definition
depending on the context in which it’s used. To
expand the definition of intelligent agents given by
Russel and Norvig, [3], we can state that:

An Intelligent Virtual Agent is a synthetic character
that can perceive its virtual environment using
sensors and act upon it by means of effectors, using
AI techniques to form decisions. The term virtual
refers to the graphical representation of the agent.

To further expand the definition, IVAs perceive
dynamic conditions, act to affect them and use
reasoning to interpret perceptions, solve problems,
draw conclusions, and determine actions, [4].

IVAs display certain characteristics : an IVA can
be autonomous, thus being able to operate without
depending on humans, can interact with other
agents, can interact with and interpret the
environment and can dictate its own behaviour by
defining goals to achieve.

The recent advancements in the realm of 3D
graphics have led to the increasing use of Virtual
Environments, [5] :

A virtual environment is an interactive 3D world,
developed using computer technology, in which the
objects have a sense of spatial presence.

The virtual world allows users to interact with its
objects and incorporates physics, animations and
sounds so as to render the whole experience
realistic. Despite the high level of realism of today’s
virtual environments, the experience cannot be
characterized as immersive, given the lack of
interaction with other humans or computer-
generated intelligent entities.

The meeting point of Intelligent Virtual Agents
and Virtual Environments is an Intelligent Virtual
Environment (IVE). It consists of a 3D world
wherein IVAs can operate and interact with both
humans and other IVAs. The increasing computing
power contributes to the creation of visually realistic
environments and allows for efficient application of
advanced AI techniques. The agent can “sense” and

interpret the surrounding environment and act
accordingly.

2.2 Network-based IVAs and IVEs
The advancement of networks and their widespread
use, have laid the foundation for developing
network-based IVAs and IVEs.

A Network-based IVA, while maintaining the
basic IVA characteristics, also supports interaction
with other remote IVAs, [2], and humans on shared,
remote IVEs. Network based IVEs, are deployed in
the form of a server hosting the virtual environment
and allowing for either human or IVA clients to
connect and operate in the virtual environment.

3 Architecture & Topology
Following the example of DIVA, [1], and mVital,
[6], the system consists of the world server and one
or more visualization and agent clients. The world
server contains and manages the virtual
environment, but is not responsible for visualizing it.
It manages all the information regarding the world,
its objects, object relations and its ‘laws’.
Furthermore, the world server is responsible for
generating the agents’ sensory input and for
executing the agents’ actions.

The visualization client displays the virtual
world in real-time using 3D techniques.

The agent clients are responsible for interpreting
the agents’ senses, making decisions and taking
actions.

The agents operate in ‘Sense-Decide-Act’ loops,
while the world server operates in ‘Receive-Update-
Send’ loops.

Specifications of the communication between the
world server, the visualization client and the agent
clients, as well as the format of the communication
messages must be now given.

3.1 Communication Model
Amongst the modules of the proposed system, two
types of communication solutions can be developed.

 Direct linking between the modules
 Network based approach

The first approach suggests the direct linking of the
three modules of the system. Direct linking is the
creation of a static library, or a dynamic link library,
e.g. a dll for Windows, for each module, and
combining them with a core application, thus
producing the final system. The core application is
responsible for the communication between the

modules, distributing the messages through
appropriate function calls. The modules exist in the
application in the form of objects, the functions of
which are executed via threads.

The second approach suggests the use of a
network protocol as the means of communication
between modules. Therefore, the modules have to
be standalone, executable applications, possibly
located on several different computers. The protocol
used for the communication can be either the
TCP/IP or the UDP protocol. Both require the
opening of a socket, i.e. a listening and transmitting
port, used for exchanging messages.

The simplest approach is the use of direct linking
between the modules. Even though it is quite
simple, easy to implement, thoroughly tested and
used in numerous projects, it exhibits a significant
disadvantage; the inability of scaling in a distributed
environment results in the lack of distributed
computing advantages, such as the use of multiple
processors for handling the different tasks of the
application.

Fig.1 Topology of Network based
communication among modules

On the other hand, the network based approach is
natively capable of migrating to a distributed
environment. The main advantages of the network-
based implementation are that:

 the environment and the agents that live
within are decoupled,

 the user can remotely access and interact
with the IVE

 the distribution of computing power allows
the implementation of more advanced
graphics and AI techniques,

 the IVE can support multiple users
simultaneously

Therefore, solutions to the above problems must be
found and implemented. However, there are a
numerous drawbacks to this approach, too. First of
all, the messages passed over need to be formatted
by the sender and analyzed by the receiver, via a
predefined protocol. The above process is time
consuming and requires system resources, such as
network bandwidth and cpu-time. Moreover, the
delivery time of the messages is not insignificant.

The delay between the dispatch and the arrival of a
message can vary depending on network traffic,
bandwidth and end to end distance. If the messages
sent are relatively large and frequent the system will
be delayed and the network overloaded.

In order to resolve the above problems we have
introduced some techniques so as to overcome
network limitations :

 Transmit only the required information, by
distributing parts of the world server
regarding the agent to the agent clients.

For example, if the agents’ vision is implemented
exclusively in the world server, the agent client
would require querying the server continuously to
receive visual stimulus. This results in frequent and
large messages. By transferring part of the
knowledge concerning the position of the objects to
the agent client such queries are not required.

Fig.2 Agent client enhanced with
information concerning the world

 Define more complex actions, and transmit
them, instead of the elementary ones they
are comprised of.

For example, the agents’ motion consists of several
small steps. Instead of transmitting these elementary
actions to the visualization client and the world
server, the agent can instruct the avatar to move to a
specific position without caring about the
intermediate steps.

 Connect each agent client, not only with the
world server, but also with all the agent
clients.

This results in reducing the workload of the world
server, as well as the network traffic, because
otherwise the world server would have to retransmit
messages from one agent client to the others.

3.2 Sense – Decide – Act
Sensing is the ability of the agents to receive
information about their environment. Sensing can be
divided into the following categories:

 Un-requested events, which are sent to the

agents when their sensors are stimulated,
i.e. an event notifying the agent about
bumping on a wall.

 Continuous requests for sensory
information, made by the agent, i.e.
frequent queries concerning the objects
inside the agent’s field of view.

Sensing is performed in the world server. The first
category of sensing produces messages which are
short, and at the same time relatively scarce.
Therefore, such messages do not create significant
network traffic. On the other hand the second
category of sensing produces messages which are
rather large and frequent.

The fist category of sensing can be implemented
in the world server. However, the second one must
be implemented in the agent client. Therefore, the
required bandwidth and cpu-time for the transmition
is minimized. Moreover, as the necessary
information, such as vision information, is located
on the client, the querying is much faster, resulting
in more accurate knowledge of the environment.

However, the agent client must be informed
about changes in the environment, occurring from
both other agents and the “laws of the world”. The
client can be notified by the world server for every
change, or by another agent client which is
responsible for the change. We followed the second
approach, as it reduces the network’s traffic. Direct
connections between the agent clients are
mandatory.

Deciding takes place in the agent client and is
based on the interpretation of the sensory
information received, the knowledge base of the
agent and a BDI, Beliefs-Desires-Intentions, model.
As stated above, for performance reasons, the client
receives all the information concerning changes in
the virtual world. However, for believability reasons,
the agent is allowed to use only the part of the
information that has already been sensed.

Acting is the “implementation” of the decisions
of the agent. Actions can be broken down to two
categories, those that affect the environment or other
agents and those that affect the agent’s state. These
decisions can be instinctive, non-cognitive or
cognitive. Messages concerning actions that belong
to the first category are sent to the world server and
the other agents, if required, and are visualized by
the visualization clients. Actions of the second
category are handled internally by the agent client.

3.3 Message Categories
The messages exchanged by the clients and the

server can belong to one of the following categories
depending on the participating entities:

 Agent client to agent client messages.
 Agent client from/to world server messages.
 World server to visualization client

messages.
The Agent client sends messages to the world server
which contains commands about the intended
action. This action will be executed in the virtual
world. However there may be a delay between the
reception of the message and the time that the
message’s instructions have been fully executed.
Therefore, an additional categorization concerns:

 Latent messages
 Instant messages

For example, latent messages may be “move to”
instructions, which are completed when the
destination is reached. It is a possibility that the
agent will not be able to reach the destination. The
agent’s client is notified about the event that blocked
the agent, such as a bump on an obstacle, and that
the instruction could not be executed. In the
meantime, new instructions received, will either be
executed in parallel, or override the execution of the
previous instructions.

4 A Case Study over Unreal
The architecture described above has been followed
to develop a network based, distributed agent
system over the Unreal Engine. The Unreal Engine
fulfills most of the requirements stated. However, in
some cases, minor modifications had to be made.

As stated above, the system consists of three
types of modules; the world server, the agent clients
and the visualization clients. The Unreal Engine
offers both approaches, i.e. direct linking and
network based communication. The second
approach was preferred, for reasons stated above.

The Unreal Engine provides both the world
server and the visualization client in a single
module. It is possible to connect the Unreal world
server to additional Unreal visualization clients.

The Unreal Engine can handle up to five
simultaneous active connections to agent clients. We
have overcome this limitation by activating an agent
client connection only when needed. The agent
clients can be implemented in any programming
language, which offers basic socket programming
abilities. In our study, C# was used.

The sense-decide-act model, which was
proposed above, is fully applicable to the Unreal
Engine. During the initialization of an agent client,
information regarding the objects of the world and

other agents are requested and transferred.
Therefore, sensing can take place both in the
engine’s world server, as well as in the agent clients.
In addition, the client establishes connections with
all the other agent clients, so that they can
communicate directly, without burdening the world
server. The Engine also supports both latent and
instant functions. They are used to implement
corresponding latent and instant messaging.

5 Conclusions & Future Work
We have presented an approach for developing a
network based system for hosting intelligent virtual
environments.

We believe that the NAIVE approach addresses
most of the problems found in distributed IVEs,
providing an efficient framework, as shown in the
case study over the Unreal Engine.

Moreover, NAIVE overcomes problems found in
DIVA, [1], and mVital, [6], by following the basic
architecture but extending it by the experience taken
from the SimHuman system, [7].

We are currently trying to develop more lifelike
agents, by taking advantage of the distributed nature
and processing power of NAIVE. Moreover, we are
trying to create scenarios, in which the agents
exhibit competitive autonomous behavior,
displaying their independence.

References:
[1] S.Vosinakis, G.Anastassakis, T.Panayiotopoulos,

DIVA: Distributed Intelligent Virtual Agents,
Virtual Agents 99, University of Salford, 1999,
pp. 131-134

[2] Michael Wooldridge, An Introduction to Multi-
agent Systems, John Wiley and Sons Ltd, 2002

[3] S. Russel, P. Norvig, Artificial Intelligence: A
Modern Approach, Prentice Hall, 1995

[4] B. Hayes-Roth, An architecture for adaptive
intelligent systems, Artificial Intelligence, Vol.
72, No. 1-2, 1995, pp. 329-365.

[5] S.Bryson, Virtual Reality: A Definition History,
Lexicon Definition Supplement, NASA Ames
VIEW lab,
www.fourthwavegroup.com/fwg/lexicon/1725w1.htm

[6] G.Anastassakis, T.Panayiotopoulos, A System
for Logic based Intelligent Virtual Agents,
International Journal On Artificial Intelligence
Tools, in press, 2004

[7] S.Vosinakis, T.Panayiotopoulos, A tool for
constructing 3D environments with Virtual
Agents, Multimedia Tools and Applications
Journal, in press, 2004.

http://www.fourthwavegroup.com/fwg/lexicon/1725w1.htm

